Iterated Approximate Moving Least Squares Approximation

نویسندگان

  • Gregory E. Fasshauer
  • Jack G. Zhang
چکیده

The radial basis function interpolant is known to be the best approximation to a set of scattered data when the error is measured in the native space norm. The approximate moving least squares method, on the other hand, was recently proposed as an efficient approximation method that avoids the solution of the system of linear equations associated with the radial basis function interpolant. In this paper we propose and analyze an algorithm that iterates on the residuals of an approximate moving least squares approximation. We show that this algorithm yields the radial basis interpolant in the limit. Supporting numerical experiments are also included.

منابع مشابه

Scattered Data Approximation of Noisy Data via Iterated Moving Least Squares

In this paper we focus on two methods for multivariate approximation problems with non-uniformly distributed noisy data. The new approach proposed here is an iterated approximate moving least-squares method. We compare our method to ridge regression which filters out noise by using a smoothing parameter. Our goal is to find an optimal number of iterations for the iterative method and an optimal...

متن کامل

Preconditioning of Radial Basis Function Interpolation Systems via Accelerated Iterated Approximate Moving Least Squares Approximation

The standard approach to the solution of the radial basis function interpolation problem has been recognized as an ill-conditioned problem for many years. This is especially true when infinitely smooth basic functions such as multiquadrics or Gaussians are used with extreme values of their associated shape parameters. Various approaches have been described to deal with this phenomenon. These te...

متن کامل

Toward Approximate Moving Least Squares Approximation with Irregularly Spaced Centers

By combining the well known moving least squares approximation method and the theory of approximate approximations due to Maz’ya and Schmidt we are able to present an approximate moving least squares method which inherits the simplicity of Shepard’s method along with the accuracy of higher-order moving least squares approximations. In this paper we focus our interest on practical implementation...

متن کامل

Recent Results for Moving Least Squares Approximation

We describe two experiments recently conducted with the approximate moving least squares (MLS) approximation method. On the one hand, the NFFT library of Kunis, Potts, and Steidl is coupled with the approximate MLS method to obtain a fast and accurate multivariate approximation method. The second experiment uses approximate MLS approximation in combination with a multilevel approximation algori...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004